
(c) Let $f_{n}(x)=x^{n}, x \in[0,1]$. Show that the sequence of functions $\left\{f_{n}\right\}$ is not uniformly convergent.
(d) If a power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges for $=x_{1}$, then prove that the series converges absoultely for all real x satisfying $|x|<\left|x_{1}\right|$.
(e) Prove that the series $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots$ is convergent.
2. (a) Prove that

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{\sqrt{n^{2}+1}}+\frac{1}{\sqrt{n^{2}+2}}+\frac{1}{\sqrt{n^{2}+3}}+\ldots+\frac{1}{\sqrt{n^{2}+n}}\right)=1
$$

(b) Show that the series $1-\frac{1}{2}+\frac{1.3}{2.4}-\frac{1.3 .5}{2.4 .6}+\ldots$ is convergent.
3. (a) A sequence u_{n} is defined by $u_{n+2}=\frac{1}{u}\left(u_{n+1}+u_{n}\right)$ for $n \geq 1$ and $0<u_{1}<u_{2}$. Prove that the sequence $\left\{u_{n}\right\}$ converges to $\frac{u_{1}+2 u_{2}}{3}$.
(b) Discuss the convergence of $\frac{1}{1.2 .3}+\frac{1}{2.3 .4}+\frac{1}{3.4 .5}+\ldots$
4. (a) Let $f_{n}(x)=n x(1-x)^{n}, x \in[0,1]$ for each $n \in N$. Show thast the limit function f is continuous. But $\left.<f_{n}(x)\right\rangle$ does not converge to uniformly.
(b) Prove that the series of functions
$\frac{x}{x+1}+\frac{x}{(x+1)(2 x+1)}+\frac{x}{(2 x+1(3 x+1)}+\ldots x \geq 0$
is convergent on $[0, \infty)$.
5. (a) A function f is defined on $\left(-\frac{1}{3}, \frac{1}{3}\right)$ by
$f(x)=1+2.3 x+3.3^{2} \cdot x^{2}+\ldots+n .3^{x-1} \cdot x^{n-1}+\ldots$.
show that f is continuous on $\left(-\frac{1}{3}, \frac{1}{3}\right)$. Evaluate $\int_{0}^{\frac{1}{4}} f d x$.
(b) Find the radius of convergence of the power series

$$
1-\frac{2^{2}}{3^{2}} x+\frac{2^{2} 4^{2}}{3^{2} 5^{2}} x^{2}-\frac{2^{2} 4^{2} 6^{2}}{3^{2} 5^{2} 7^{2}} x^{3}+\ldots
$$

6. (a) Prove that the series $(1-x)^{2}+x(1-x)^{2}+x^{2}(1-x)^{2}+\ldots$ is uniformly convergent on $[0,1]$.
(b) Prove that a power series can be differentiated term by term within the interval of convergence.
